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The problem of transferring a non-linear dynamical system, subject to perturbations, to the null equilibrium position in a finite 
time by means of a botmded control is considered. Only the levels of uncontrollable perturbations are known, and are not assumed 
to be small. Sufficient conditions are obtained which ensure that the problem has a guaranteed solution for the given domain 
of initial conditions. Axt estimate of the guaranteed control time is obtained. The construction of the control can be reduced to 
the construction of game strategies for auxiliary linear game-theoretic problems. To estimate the "auxiliary noise" in the resulting 
linear system, the principle of "prescribing and subsequent confirmation" of noise levels is put forward. On the basis of this 
principle, these estimates are checked on the set of states of the au,~liary linear systems, where the control is also subsequently 
estimated. As a result, an iterative algorithm for solving the original non-linear problem is obtained. Within the framework of 
the method proposed a ]~ 'w solution of the game-theoretic problem of the reorientation of an asymmetric rigid body in the presence 
of  noise is given. O 19gq Elsevier Science Ltd. All rights reserved. 

This paper  develops the approach presented in [1-4] and touches on the study of decomposition [5-7] 
as well as the partial stabilization and controllability [8--11] of non-linear controlled systems. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose that  the motion of  the controlled object can be described by a non-linear system of  ordinary 
differential equations 

Yi = Y/(1)(x) + ~- Yik(X)Uk + ~(2)(X)D i, Zj = Zj(x) (1.1) 

Here  and below i = 1, m ,  j = 1, p,  k =  1, r summation over repeated subscripts is performed,  x = 
(y, z) is the vector formed by the phase variables yj, zi, and u, v are the vectors formed by the control 

" (1) (2) functions uk and noise vi, respectively. The functions Y/ , Y'~k, Y/ , Zi as well as the derivatives of  Zj 
with respect to yj and zj are defined and continuous in the domain 

A: I x l < H = c o n s t > 0  

Unlike the functions y/0), Zj that vanish at x = 0, the possibility that  Y/k will vanish at x = 0 is excluded 
(otherwise a contradiction with some conditions to be adopted later on in this paper  would arise). 

The  control functions u ~ K are chosen in the class K of vector-valued functions u = u(x, x0) (x0 
being the initial value of x) that are piecewise-continuous in x and x0 (in the admissible domain of 
variation of x and x0). The control functions u ~ K also satisfy prescribed "geometric" bounds 

lukl ~ ~k = const > 0 (1.2) 

The  noise v ~ K1 can be realized as arbitrary piecewise-continuous functions v = v(t) subject to the 
constraints 

lui(t)l ~< [3i = const > 0 (1.3) 

Problem 1. It  is required to find control functions u ~ K that transfer system (1.1) from the given 
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domain S of initial perturbations x0 = x(t0) ¢ S to the equilibrium position xl = x(tl) = 0 in a fin/re 
time for any v e K~. The time t~ > to is not fixed. 

2. AUXILIARY LINEAR SYSTEM 

We consider the vector-valued function @(x, u): R ~+~ ~ R ~'+q, n = m + p (q is a constant and 
0 ~< q < r ~< m) with components (here and henceforth s= 1, q) 

¢bs = ~ Ysk (x)ut, ~q+j = E[aZf(x) Iay i ][]~ ~k (x)ut ] (2.1) 

Assuming thatp + q ~ r, we introduce the Jacobi matrix F = II ~lg/~u II. Suppose that in the domain 

Al: Ixl < Hi = const > 0 (AI C_ A) (2.2) 

the condition 

rankF(.x) = r (2.3) 

is satisfied. Moreover, we assume that the same rows of F, say, the first r rows of F, are linearly 
independent for all x ~ A1. 

In the case (2.3) the system Oh(x, u) = ul  (u~ being auxiliary control functions defined below, which 
form a vector n*) has a solution 

u = if.x, u*) (2.4) 

with f(0, 0) = 0, the components fk of the vector-valued function f: R n+r  --9. R r being continuous with 
respect to x and u* for x ¢ A1 and all u*. 

We introduce the notation 

= uq÷, = (2.5) 
A 

Here and henceforth I = 1,r 'q. The Y/can be obtained from the expressions for~i in (1.1) for u k = 
0. The vector-valued function X: R ~ m ~ R ~ has components Yl, Zj and aZllax:/~' --> R ~ has components 
aZt/~yi, aZt /&j .  The  scalar produet is denoted by ( . ) .  

We shall treat v~ as "auxiliary noise". As a result, under the above assumptions one can extract the 
following linear conflict-controlled system from the closed non-linear system (1.1), (2.4) 

#.~ = u~ + u ;  (2.6) 

zt = u~+t +u ,l+, (2.7) 

where ut~ is the control. 
On the basis of the solution of the corresponding game-theoretic problems for the auxiliary linear 

system (2.6), (2.7), below we shall construct a solution of the original non-linear Problem 1. As a result, 
(2.4) can be regarded as the general structural form of control in Problem 1. The parameters of this 
form, i.e. the auxiliary control ulcan be determined by solving the corresponding linear game-theoretic 
problems. 

Unlike the formulations of problems considered before [3, 4], the structure of the "auxiliary noise" 
v~ becomes more complicated as one changes from the original system ( 1.1 ) to the auxiliary linear system 
(2.6), (2.7). This enables us to simplify the control uk obtained before [3, 4], but it becomes more difficult 
to find v~. As will be shown later, in specified problems the proposed principle of "prescribing and 
subsequent confirmation" of vl may be useful in this respect. 

3. AUX'ILIARY LINEAR G A M E - T H E O R E T I C  PROBLEMS 

For system (2.6), (2.7) we shall solve the problem of the fastest transfer to the position 

y, = O, z~ = ~t = 0 (3.1) 
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by means of the auxiliary controls ul  for any admissible v~. • 
We shall consider this problem as a differential game. One of the players, who has u t  at his disposition, 

tries to minimize rite time x taken to transfer to (3.1). The other player (the "opponent"), who tries to 
maximize x, can control the "auxiliary noise" vl. 

For the problem to be solvable the admissible levels of u~ must exceed el. Following (1.2) and (1.3) 
wewrite the appropriate restrictions as 

lu~i~ ct[ = const > 0, lu;l~ 13; = p,ct~, 0 < Pk < l (3.2) 

A procedure for determining the levels ct~, I~ is considered below. Here we consider them as given, 
so that (3.2) is satisfied. 

The solution of the differential game for system (2.6), (217) subject to restriction (3.2) can be reduced 
[5, 12] to the problem of the optimal speed of response for the system 

~ = ( l -p , )u~  (3.3) 

zt = (1 - Pq+t)Uq+t (3.4) 

subject to restrictions I u~l  ~ ot~,. 
The boundary conditions are the same as for system (2.6), (2.7). System (3.3), (3.4) can be obtained 

from (2.6), (2.7) for v~ = - p ~ .  (This is the "worst" v~-optimal control for the "opponent".) 
The solution of the time-optimization problem for systems of type (3.3), (3.4) has the form [13] 

y , .  o (3.5) 

0[* - I q÷t sign~t(zt,zi), ~t  ~ 0 (3.6) 
u~,t - [ao+ t *  s,gn" zt = -otq+t* sign" zt," Vl = 0 

Here Yt = - 2 ~ 1  - [2~x~+t(1 - Pq+l)]-lzl [Zl I are switching functions. 
The number x = max(xk), where Xk is the optimal time for each subsystem of system (3.3), (3.4), defines 

the minimum guaranteed time in the game-theoretic problem for system (2.6), (Z7) Under consideration. 
If v~, differ from the "worst" control, the time taken to transfer to the state (3.1) does not exceed x. 

We will consider some features of the phase trajectories of system (2.6), (2.7), (3.5), (3.6) for r l  
--p~uf. In the case of (2.6), (3.5) for all admissible v~ for system moves along a curve (a straight line if 
vs* ~- 0) which lies between rectilinear segments, namely, the trajectories of (2.6), (3.5) for vs* = -psus*, 
respectively, until the point Ys = 0 is reached. 

In the case of ('.L7), (3.6) the system initially moves (until the switching curve ¥1 = 0 is reached) 
between the parabolic arches of the systems zl = (1 _ p¢+l)U~+t for U~+l of the form (3.6). Then, once 
it reaches the switching curve, it slides along it until therequlred value is attained. 

4. AN A P P R O A C H  TO THE SOLUTION OF P R O B L E M  1 

We denote by IKv = {xv(t) = x(t; to, x0, v)} the set of processes of system (1.1), (2.4), (3.5), (3.6) 
corresponding to all v E/2]. Extracting the linear system (2.6), (2.7) from (1.1), (2.4) we can find the 
sets Y,* = {ys(t; to, r~, v)} and Z* = {zt(t; to, Xo, v)} for some of the components O's, zt) of x(t; to, x0, v) 
e x ,  as the sets of processes of the linear systems (2.6), (3.5) and (2.7), (3.6) corresponding to all 
admissible v~. 

Denoting by y*, z* the vectors formed byys and zt, respectively, we conclude that when solving Problem 
I we first solve the problem of transferring system (1.1) to x = 0 with respect to a part of the variables, 
namely, y*, z*. The control problem with respect to a part of the variables can be reduced to the 
corresponding control problem with respect to all the variables for the auxiliary linear system (3.3), 
(3.4). As a result, as in stability analysis with respect to a part of the variables, in the case of control 
with respect to y*, z*, the variables forming the vector z* are to be included in the set of controlled 
variables [14]. 

We will impose auxiliary conditions under which the realized transition of system (1.1) to x = 0 with 
respect to a part of the variables is in fact a solution of the original Problem I of control with respect 
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to all the variables. To do this we assume that • - q ~> m + p - r. Along with F we also introduce the 
Jacobi matrix Q of Zt with respect to the variables forming the vectors y. and z. (these include Yi and 
zl apart fromys and zt,,respectively). We put x* = (y*, z*), x. = (y., z . ) ,  so that x = (x*, x.) as a result. 

Suppose that  in the domain 

A2: Ixl < H2 = const > 0 (A2 _C A) (4.1) 

the condition 

rankQ(x) = m + p - r (4.2) 

holds. Furthermore, assume that  the samerows of Q are independent for all x e 3,2. 
We observe that for r ~< m the inequalitiesp + q ~> r and • -  q ~> m + p - • are satisfied simultaneously 

ff 

p + q = r = m (4.3) 

In this case m + p - r = r - q and Q is a square matrix, so that the condition of linear indepen- 
dence of the same rows of this matrix for all x e A2, which was imposed in addition to (4.2), is 
unnecessary. 

Condition (4.3) holds, for example, when (1.1) is used as a model of the angular motion of a rigid 
body. Moreover, this condition can be relaxed within the framework of the method proposed. 

When (4.2) is satisfied, the equalities zt = Zt(x) in A2 admit of the solution (~ :  R z'-q ---> R n-" is a 
continuous function in A2) 

x ,=~(x* ,  ~*), ~(0,  0)=0 (4.4) 

Equalities (4.4) relate the components of Xv that do not appear in Y* and Z* to those of zt = Zl(x). 
The phase vector x of (1.1) in A2 can be represented as 

x = [y*, y.  (ix),z*, z. (ix)] =A W(Ix), Ix = (y*,z*,~?) 

It follows that 

* * " *  A 
X v = {W = W[t;to,Wo(Y0,Zo,Zo(Xo)),v]} = {Wv(t) = W(t;to,Xo,V)} 

Hence Xv can be estimated by means of bound for the sets of the processes y*(t; to, y~, v), z*[t; to, z~, 
i~(x0), v], ~*[t; to, z~, i~(x0), v] of the linear (rather than the original non-linear) system (2.6), (2.7), 
(3.5), (3.6), respectively. As a result, when (4.4) is satisfied, the transfer of (1.1) to the position x - 0 
with respect to y* and z* is indeed a solution of the original Problem 1 of control with respect to all 
the variables (with respect to x). 

5. BASIC RESULTS 

Let us summarize the above discussion. 

Theorem 1. Suppose that the following conditions are satisfied: (1) there is a constant q (0 ~ q < r) 
such that p + q = r = m; (2) condition (2.3) in the domain (2.2); (3) condition (4.2) in the domain 
(4.1); (4) for the "assigned" values x, 13~ (and the values ct~ predetermined by them) the estimates 

I W, (t)l< min(Hi, H 2 ) (5.1) 

* ~ * * 
IVk[Wv(t) ,v] l~k,  Ifk[W.(t),U ]l--~¢t k 

hold for any x0 e S. 
Then for all x0 ~ S, relations (2.4), (3.5) and (3.6) solve Problem 1. Moreover, it is guaranteed that 

system (1.1) will be transferred precisely to the position x = 0 in a finite time x by means of u ¢ K f o r  
a n y v ~  K1. 
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Proof. If condition (2.3) is satisfied in A1, system (2.6), (2.7) can be obtained from the original 
non-linear system (1.1), (2.4) by an appropriate non-linear transformation of variables. Under  
this transformation the state of the variables Ys and zl of system (1.1), (2.4) in AI will be completely 
defined by the state of the same variables of system (2.6), (2.7). Thus, for all x0 6 $1 = {x0: I x,(t) I 
< H1} the control (2.4), (3.5), (3.6) guarantees that system (1.1) will be transferred precisely to the 
position 

Ys = O, zt = Zt(x) = 0 (5.2) 

in a finite time x. 
When condition (4.2) is satisfied in At, (4.4) holds. Taking ZI = Zl(X) into account, by the continuity 

of the vector-valued function ~F and the condition ~ ( 0 ,  0) = 0 the modulus of this function can be 
made as small as desired by reducing the moduliys, zt and Zt(x). Thus, for all x0 e $2 = {x0: I x,(t) I < 
rain(H1,/-/2)} the control (2.4) guarantees that system (1.1) will be transferred not only to (5.2) but 
also precisely to the position x = 0. 

As a result of  (1.2), the admissible set of initial permrbatious x0 must also satisfy the condition x0 
$3 = {x0: Ifk[x,(t), u*] I ~< o~}. Besides, for the "assigned" levels 13~ to be confirmed it is necessary that 
x0 ~ $4 = {x0: I v~[r~(t), v] I ~< 13~[}. 

When conditions 1-4 of the theorem are satisfied, the given domain S of initial perturbations will be 
contained in the intersection of the sets $1, . . . .  $4. Given that a function W = W(y*, z*, i.*): R z'-q ---> 
R n is introduced, this means that for all x0 ~ S the control (2.4), (3.5), (3.6) guarantees that system (1.1) 
can be transferred precisely to the position x --- 0 in a finite time x for all v e K1. Then the control (2.4), 
(3.5), (3.6) satisfies the given condition (1.2). The theorem has been proved. 

Let us indicate how to relax the assumptions of Theorem 1. 
Suppose that N :~rst integrals R~(x) = const, R~(0) = 0 of (1.1) are known. Assuming that r -  q + N 

I> m + p - r, in place of Q we introduce the Jacobi matrix Q* of Zt and R t  with respect to the variables 
in y. and z.. 

Corollary 1. Suppose that (1) there is q (0 ~ q < !") such that r ~< p + q ~< 2,," - m + N, (2) rank Q* 
= m + p - r for x ~ A2. If conditions 2 and 4 of Theorem 1 are satisfied, then (2.4), (3.5) and (3.6) 
solve Problem 1 for all x0 ~ S. 

Another  way of :relaxing the conditions of Theorem 1 is to use several constructions of equations of 
the type (2.4) successively. Then system (1.1) will transfer in stages (the total time being finite) from 
x0~ S t o x = 0 .  

6. AN A L G O R I T H M  FOR SOLVING P R O B L E M  1 

The above approach to solving Problem 1 involves the following stages. 
1. The choice of construction (2.4) of the controls uk, where u~ have the form (3.5), (3.6). At this 

stage ~t~, 13~ and, consequently, the parameters a I ,  Pq+l in (3.5),  (3.6) are not bounded. The structure 
of Uk is simplified compared to the earlier approach presented in [1-4] 

2. Preliminary selection of the guaranteed control time x and "prescribing" of the levels 13~. This 
predetermines ~t~, pq and specifies the parameters in (3.5), (3.6). When xk = x ("equalization" of the 
control time for each variableys and zt of system (3.3), (3.4)) the numbers ~ can be determined from 
the expressions (see [5]) 

x =: [¢x~(l - ps)]-llYso I, (6.1) 

"t =: [0t;+ t (1 - Pq+t )]-I {[/i ~ Z20 _ 0~;+ l (1 - Pq+l )Zlo sign Vt ])~ - Zto sign Yt} 

3. Estimation of the phase variables of system (2.6), (2.7), (3.5), (3.6) on the set L of states of this 
system for all admissible I v$ [ ~< 135. Verifying that the inequalities I v~ I <~ 13~ are indeed satisfied on L. 
(A knowledge of the levels 13i of the "original" noise vi is used.) Thus, at this stage we propose the 
principle of "prescribing and subsequent verification" of the "auxiliary noise" levels 13~. 

4. Verifying (5.1) on L for x0 ~ S. We observe that for the structure of (2.4) it is natural to expect 
that max I uk I will be close on the set L and on the subset L* C L of the states of the linear system 
(2.6), (2.7), (3.5), (3.6) for various combinations of v~ = __.p~ and v~ - 0. 

If the inequalities I v~ I ~< 13~ or (1.2) are not satisfied on L or, conversely, they are satisfied with a 
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"margin", then the search for proper values ofx  and 13~ is continued. Otherwise the guaranteed control 
time is governed by the choice of x. 

As a result, we obtain an iterative algorithm for solving Problem 1. The solvability of this algorithm 
depends on the relationship between the levels of the "original" control functions Uk and the noise 
vi as well as on the possible values of x0 and x. The corresponding solvability conditions are given in 
Section 5. 

Note that the controls u e K preserve the dependence on the initial state x0 also, even though they 
are constructed as functions of the actual phase vector x. This is due to the constants a~ and Pq+l in 
the expressions for u, which depend on x0. 

7. " I N V E R S E "  V E R S I O N  OF T H E  A L G O R I T H M  

1. Choose % and 13~. 
2. Compute a~ (using (6.1)) and verify that the values v$ on L satisfy I v$ I ~< 131. 
3. Estimate the levels of the controls uk using (2.4). This enables the capabilities of the controls Uk 

of the form (2.4) to be estimated. 

8. A P P L I C A T I O N  TO T H E  G A M E - T H E O R E T I C  P R O B L E M  OF T H E  
R E O R I E N T A T I O N  OF AN A S Y M M E T R I C  R I G I D  BODY 

• We consider the dynamical Euler equations (one equation is written down, from which the other ones 
can be obtained by cyclic permutation of the subscripts I ~ 2 -~ 3) 

AI~) I = ( A  2 -A3)y2Y3+U I +O 1 (1 2 3) (8.1) 

governing the angular motion of a rigid body about the centre of mass. Here Yi are the projections of 
the angular velocity vector of the rigid body onto its principal central axes of inertia, Uk are the projeetious 
of the control moment onto these axes, andAi are the principal central moments of inertia. The moments 
vi characterize the external forces and uncontrollable perturbations. Even though m = r = 3 in the case 
in question, the two subscripts i and k will be preserved, so that (8.1) corresponds to the first group of 
Eqs (1.1) and the relationships obtained earlier can be used. 

Along with (8.1) we consider the kinematic equations governing the body orientation in terms of the 
Rodrig-Hamilton variables [15] 

2zl = YlZa + Y3Z2 - Y2Z3 (1 2 3) (8.2) 

The variable z4 in (8.2) is related to zj (j = 1, 2, 3) by 

+ Z = l (8 .3 )  

and an equation for ~4 can be obtained if required. 
For system (8.1)-(8.3) m = p = r = 3 and (4.3) holds for q = 0. Henceforth z = (z4, zl, z2, z3) and 

x = (y,  Z). 

8.1. Formulation o f  the reorientation problem. We choose the control functions u E K in the class K 
of piecewise continuous functions u = u(x, x0) with bounds (1.2). In the case in question inequalities 
(1.2) correspond to three pairs of engines fixed to the body. 

The noise v e/(1 can be realized as arbitrary piecewise continuous functions v = v(t) subject to (1.3). 

Problem 2. It is required to find controls u e K that transfer the body from an arbitrary initial state 
z(t0) = z0 to a prescribed state Z(tl) = Zl in finite time for any v ~ K1. Both states are stationary y(t0) 
= Y0 = y(tl) -- Yl = @. The time t 1 is not fixed and is to be found from speed of response requirements. 

Without loss of generality we can assume that Zl = (1, 0, 0, 0). Indeed, in this case orientation can 
be regulated relative to a reference system specified at the initial instant of time. Everywhere below i, 
j, k = 1, 2, 3 in accordance with the adopted notation. 

A game-theoretic approach to the problem of the reorientation of an asymmetric rigid body was 
proposed in [2]. This problem is topical, for example, in the dynamics of spacecraft, robotics and 
biomechanics. It is necessary to obtain guaranteed solutions that are traditional in game theory because 
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of the increasing l:,ractical requirements. However, a rigorous solution of non-linear game-theoretic 
problems is very diifficult to obtain even if modem computers are used. In this connection a method 
was also proposed in [2] which enables the given non-linear problem to be reduced to linear game- 
theoretic problems. It is based on the choice of the structage of controls, of the type presented in [16--18], 
which was independently proposed in [19] from a slightly different viewpoint. The resulting control is 
robust, ensuring exact reorientation of the body in a finite time, which can be computed from the time- 
optimization condition. 

The control functions in [2] are non-linear functions of variables defining both the angular velocity 
and the orientation of the body. For any admissible realizations of noise (except for special cases) they 
represent five impulses of variable intensity. 

Following the proposed modification of the approach presented in [1--4], the method described in 
[2] is modified below to obtain simpler controls, which are consequently easier to realize. In particular, 
it does not contain ,components compensating for the gyroscopic moments of the bodyM1 = ( a  2 -h3)y2y 3 
(1 2 3). As in [2], the solution can be reduced to simpler linear game-theoretic problems. The control 
is simplified on account of a more complex "auxiliary noise" structure in the resulting linear systems. 

Estimates for the', "auxiliary noise" require a computation on the set of states of linear auxiliary conflict- 
controlled systems. Unlike the method described in [2], to obtain such estimates the proposed principle 
of "prescribing anti subsequent confirmation" of noise levels must be used. 

Despite this difference, the proposed modification of the method described in [2] does not involve 
any more complex calculations. Besides, for certain restrictions on the control functions the computations 
are much simplified. 

As regards the game-theoretic problem of the controlled angular motion of a rigid body under 
consideration, the papers [20-26] on the controlled motion of an aircraft in a medium with uncertain 
parameters should be mentioned. 

8.2. Auxiliary conflict-controlled system. We differentiate both sides of each of the equations for ~ in 
(8.2) with respect to time and replace j~j by the expressions from (8.1). After some reduction we obtain 

Z'l = fl (z,u) + qh (y,z,v) (8.4) 

f l  = ~2 (Z4UlAI I + Z2u3A31 - Z3u2A21 ) 

(Pl = Y2[Z4(OI + MI)A? I +z2(u3 +M3)A31 - -Z3( i )  2 +M2)A21]-~zl Y. y2 i (1 2 3) 

We will regardj~ and % respectively, as auxiliary control functions u,* and noise v~. As a result, expressions 
(8.4) can be regardedas a conflict-controlled system of type (2.75 

=u; +o7 (8.5) 

Then the "original" controls uk can be expressed in terms of u 7 by equalities of type (2.4) 

2AI  2 * * * 
u I -- • [ (z  2 + z  I )u I + ( Z l Z  2 + z 4 z 3 ) u  2 + ( Z l Z  3 - z 4 z 2 ) u 3 ]  (1 2 3)  

Z4 
(8.6) 

Construction (8.6) can be regarded as the general structural form of the controls in Problem 2. The 
parameters of this form, that is, the auxiliary controls u~, can be determined when solving the 
corresponding line, ar game-theoretic problems. 

Structure (8.6) of the controls involves the factor z4 -1, which formally leads to a "singularity". However, 
the following more detailed analysis shows that in the case when zl = (1, 0, 0, 0) the relation z4 ~ [z40, 
1] holds during the control process. Thus, the "singularity" simply does not appear. If z40 is small or 
Zl ~ (1, 0, 0, 0), it ,;uffices to change to the control functions (or a combination thereof) obtained from 
(8.6) by a transposition of subscripts. The "suboptimal" control functions Uk are finally chosen inductively, 
which is characteristic of many modem methods of applied control theory. We emphasize that the 
iterative search for "suboptimal" controls described is quite simple within the framework of the proposed 
algorithm for solving Problem 2. It can be realized in real time while the controlled object is functioning. 

8.3.Auxiliary game-theoretic controlproblems. For system (8.5) we will solve the problem of transferring 
it to the position 
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z /=k j  =0  (8.7) 

in the minimum time by means of auxiliary controls u~ for any admissible noise v~ 
This problem can be treated as a time-minimax differential game of the type considered in Section 

3. Its solution, subject to restrictions of the type (3.2), can be reduced to the time-optimization problem 
(wit the same boundary conditions) for a system of type (3.4). 

As before, the procedure of selecting ix,*., [1~ involves the principle of "prescribing and subsequent 
confirmation" of these levels. For the time ~eing, we assume that these are given, so that conditions of 
type (3.2) are satisfied. 

Since zj0 = 2j0 = 0 (which follows from the fact that Y0 = Yl = 0), the quantity 

"t: = m a x ( ' l : j ) ,  ~j = 2{IZjol[Ot~(l --pj)]-l} I/2 (8.8) 

defines the minimum guaranteed time x taken to reach the position (8.7). If v~ ~ -pju~, the time taken 
to reach the position (8.7) does not exceed x. 

Henceforth we shall assume that the subscripts in (3.6) correspond to those in (8.5), i.e. q + l 
is replaced byj in (3.6). An analysis of the phase portrait of the system (8.5), (3.6) shows that the condition 
z4 > Y = const > 0, being satisfied for t = to, holds for any admissible v~for t e [to, to + x]. This is important 
from the point of view of the operating efficiency of the controls uk of the form (8.6). 

8.4.Algorithm for  solving Problem 2. We first solve the problem of transferring the body to the required 
position with respect to zj. This problem can be reduced to the game-theoretic control problem (with 
respect to all the variables) for the linear system (8.5). Solving the system for iq in (8.2) as an algebraic 
system with respect to Yi, we obtain equalities of the type (4.4) 

2 .  
Yl =~-[(Z~ +Zl2)Zl +(ZlZ2 +ZaZ3)Z2 +(ZlZ3 --Z4Z2)Z3] (1 2 3) 

Z4 
(8.9) 

On the basis of (8.9) we conclude that transferring the body to the required position with respect to zj 
in fact amounts to solving Problem 2. 

The solution scheme includes the following stages. 
1. Choosing a construction (8.6) of the control Uk with u7 of type (3.6). At this stage a~, and [l~ are 

undefined. As compared to the approach in [2], the Uk are simplified. They do not contain any 
components withyi or, in particular, any components compensating for the gyroscopic moments of the 
body. 

2. The preliminary choice ofx and "determining" the levels [3~. According to (8.8) this predetermines 
a~, p~. For xj = x ("equalization" of the control time for each zj) we have 

aj  = ~Jj + 41ZjolX -2 (8.10) 

3. Estimating zj and ij on the set L of states of the linear system (8.5), (3.6) for all admissible I v~ I ~< 
13". At this stage we use the principle of "prescribing and subsequent confirmation" of the levels 13~ 

J "  . . . . . . .  • 

Only once the levels 137are prescribed is it possible, in particular, to use estunates of type presented m 
[2] to estimate vTon L. We observe that, unlike the approach in [2], it is necessary to use the principle 
stated above to realize the algorithm. 

÷ z7 z7 t zj 

to.  3"1 Jzjol-,i,2 2,;, 
- " -  

(~ ,  7)1 s T ( t - ~ )  ~ - " -  - " -  
(~,  ~1 - " -  o - " -  
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4. Verification of the original restrictions (1.2) on Uk in L. For (8.6) it is natural to expect that max 
I Uk I will be dose on the set L and on the subset L* C L of states of the linear system (8.5), (3.6) for 
various combinations vy = __.pyu~ and v~ ~- 0. It is not difficult to compute max I Uk I on L*. 

As a result, we obtain an iterative algorithm for solving Problem 2. 

8.5. Construction of  estimates for v~ We use the inequalities l YO'2 1 ~< 1/2Y.~ (1 2 3) and the relation 

E y~ = 4{[z~ t ~(zy~y)]2 + y.(~j)2 ] (8.11) 

which can be verified using (8.9). We obtain the following (overestimated) bounds 

4. - I  /k! ~ ~2(Z~JiA~ ! +Z~3A~ I +z3~2A2 ), rl =IA 2-A31A~ I (1 2 3) (8.12) 

z4' - =[1- 

The expression.,; for zy (+' -), ~j- (overestimated for ~j- when t >I to + T j*) are listed in the table, in 
which 

Ty---2(l-py)-lTT, TT---[(2s~)-llZyol(1-py)l ~, s ~ = ~ a ~ ( l + p ~ )  

The overestimated bounds (8.12) can be weakened. To this end we observe that yi of the form (8.9) 
preserve the sign (Yi ~< 0 ifzj0 > 0) in many cases for all admissible vy. For example, ifA2 ~A3 ~>A1 
(other cases can be dealt within a similar way), the first group of inequalities in (8.12) can be replaced 
by 

+z3r2,zl +z~r3)]G+A ! (1 2 3) (8.13) 

8.6. Construction of  estimates for u k. Calculations can be simplified if the inequality 

E = Y~(u~A~ 2) < ¢z -- corot > 0 (8.14) 

is used in place of (1.2) to estimate (8.6). Indeed, by (8.6) E is given by (8.11) if~y is replaced by u~. 
Thus (8.14) is satisfied if 

E* = [(z40)-m ~(I zjolot~ )i 2 + Z(a~ )2 < ~¢t (8.15) 

Moreover, for the integral estimate E = E(t) for t ~ [to, to + x] we can use the inequalityE ~< 4{[(z~) -1 
2 + z(a92). 

8.7. Solvability conditions for Problem 2. Let us summarize the above argument. 

Theorem 2. If the levels o~ of the controls u k in (8.1)-(8.3) are high enough, then for any given levels 
13i of the noise vi file rules uk which solve Problem 2 can be constructed in the form (8.6), where u~ have 
the form (3.6) (once the subscripts are appropriately specified). This ensures precise reorientation of 
the body in a finite time x for any v e K1. The value of x can be established by iteration using the algorithm 
presented in Sectiion 8.4. 

Corollary 2. Suppose that the levels [~i of the noise vi in (8.2)-(8.3) are such that for the "assigned" 
values x, [~the e,;timates I v~ I ~< I~hold on the basis of inequalities of type (8.12) or (8.13). Then, 
given that (8.15) holds, the controls (8.6) satisfy (8.14) and ensure precise reorientation of the body in 
a finite time x. 

8.8. A possible development of  Problem 2. Problem 2 assumes that the initial and final states of the 
body subject to rotation are states of rest. Along with this problem, in the ideal noiseless case the problem 
of the reorientation of a body was solved [27] for a body which fails to come to rest in the final state 
following rotation. In this case it is ensured only that the body "passes" through the desired angular 
state in three-dimensional inertial space. 
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This reor ientat ion was compared  [27] with the tradit ional one,  when  the body is at rest in the initial 
and final positions. It  was shown that  for  identical restrictions on  the controls  the "non-tradi t ional"  
reor ientat ion can be realized much more  quickly. Besides, t he  resulting control  is simpler. This is o f  
interest when  designing spacecraft  reor ientat ion systems to pe r fo rm opera t ions  o f  short  durat ion at 
the instant when  the body  passes through the required angular position, such as photography,  striking 
a target, da ta  transmission, etc. 

It  is of  theoret ical  and practical interest to  solve such a problem in a game- theore t ic  setting. To do 
this one can use, for  example, the approach  p roposed  in [1--4] and developed in this paper  (subject to 
a suitable modification).  

9. E X A M P L E  

To estimate the capabilities of the algorithm we consider the reorientation of a body wi tha  I = 4 x 104,A2 = 8 × 
104,A3 = 5 × 104 (kg m 2) from the position Y0 = 0, z0 = (0.701; 0.353; 0.434; 0.432) to Yt = 0. 

We put x = 70 (s). Using inequalities (8.13), which bold in this ease, for 

1/2 [z4 vIA1-1  + Z 2 v 3 A 3  "1 - z 3 I. '2A2 -1 I ~< 1 0 - 3  (S-2)  (1 2 3) (9.1) 

, 5 2 , -6  -.4 we can put [~j = 245 x 10- (s-),  as can be seen from computations. In this case 4E = 185 x 10 ' (kg  s ). It follows 
, , , -6" =-4 that the controls (8.6) satisfy (8.13) with ~ = 4E . The mean value of E is equal to 123 x 10 (kg s ). 

Using the amplifying inequalities, from (9.1) we have ~1 = 39.9; [32 = 92.9; [13 = 57.9 (N m). But the admissible 
values of vi may be higher. 

For comparison, we also performed computations following the method described in [2]. With the same restrictions 
(9.1) and the same x the control levels u k in [2] are such that inequality (8.14) is satisfied for ct = 174 x 10-6 
(kg s-4). Comparison shows that the proposed modification of the method in [2] is effective. 
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